If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=4.905t^2
We move all terms to the left:
10-(4.905t^2)=0
We get rid of parentheses
-4.905t^2+10=0
a = -4.905; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-4.905)·10
Δ = 196.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{196.2}}{2*-4.905}=\frac{0-\sqrt{196.2}}{-9.81} =-\frac{\sqrt{}}{-9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{196.2}}{2*-4.905}=\frac{0+\sqrt{196.2}}{-9.81} =\frac{\sqrt{}}{-9.81} $
| 0=9x^2+30x+17 | | (x-4)(x+8)+11=0 | | 2x(x-2)=4x-2 | | 3/7x+4=13 | | 18-(8a-12)=8a | | 1750=x-0.05x | | 3(4x-5)-2x=8x+13 | | 0=4x^2-36x+59 | | 3/4z-3=15 | | 3/2(b=1)=3 | | -8/3x=1 | | 8(y+5)=35 | | 2x+15+16x+30=85 | | 4t+-5=2t+5 | | 3(x-7)=3x | | 600/3=3n/3 | | 8y+2-5y=19 | | 8×+10-2x=4(×-5) | | 1/2(2q+2)=7 | | 3x-2/7-1/2=x-1/14-1 | | 0=49x^2+28x-15 | | 4(x-2)=2x+12+5x | | 3x+x+8=10x-6x-8 | | 3(2x+2)=10x+2-4x+4 | | 4(x+3x)=32 | | 10x+14x-10=6(4x+6) | | 4x+31x-5=7(5x+8) | | 10+x=250+5000x | | 6x+10=6x-4 | | 5x-2.8=8.6 | | 65=35^x | | 5x-25+7x+25+7x-5+7x-15+9x=540 |